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Abstract. In a recent article, Saied and U-Wakil discussed the similarity solutions of a 
fragmenting system Their article is an extension of our own work on an equation including 
continuous loss of mass, Saied and El-Wakil restrict their considerations to similarity solutions 
on a special choice of parameten. We demonshate here that the symmetry group given in 
Saied and El-Wakil's article is incomplete. Fuahemm'e, we are able to consmct new similarity 
solutions derived from the missing subgroup. 

In their article, Saied and El-Wakil [I] considered a special case of the discrete fragmentation 
model originally introduced by McGrady and Ziff [2] which was extended by a continuous 
mass loss. The similarity solutions of a continuous fragmentation model were first discussed 
by Baumann et al [3]. In the work of Saied and El-Wakil, the symmetry smcture of the 
extended fragmentation model was analysed using Lie's method. 

According to [l], this fragmentation model can be described by the equation 

a,,w, t )  + A ~ , , u ( u ,  r) + ~a,tu(u, t )  + C W ( U ,  t )  = o (1) 

where 

A = -quo" 

B = -~(2j3 + 2 +  P ) U ~  +U' 

c = (0 + 2 - q p ( p  + 1 + pNuO-1 

are constants which are related to the fragmentation rate, the distribution of the daughter- 
particle mass and the continuous mass loss. 

This equation was derived from an integrodifferential equation of the continuous loss 
of mass which has its origin in [2,4,5]. This type of differential equation (1) was also 
introduced by Edwards etal [6] discussing fragmentation with mass loss. Differentiating this 
integrodifferential equation with respect to the variable U ,  we get differential equation (1). 
U denotes the spatial and t the time variable in equation (1). 

The similarity solutions discussed in [I] are restricted to a special case of the physical 
parameter p = 6 + 1. The solutions follow from a subgroup which linearly combines two 
vector fields of a three-dimensional symmetry group. With this reduction, the final solution 
is represented either by Kummer's equation or by confluent hypergeometric equations. In 
the case without continuous mass loss, a scaling solution is described in analogy to [3]. 
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In our examination of (I), we used the MATHEMATICA program Lie, which was 
written to analyse the symmetries of ordinary differential equations (ODE) and partial 
differential equations (PDE) [7,8]. The program ~ i e  uses the standard procedure of Lie's 
method, as described by Olver 191, to derive the determining equations of the infinitesimal 
transformations. The latest version of the program includes a routine which automatically 
calculates the exact analytical solution of the determining equations [3]. This routine 
contains a repeated integration and back-substitution procedure to solve various systems 
of PDE. First, the determining equations are deconpled and expressed in a standard form, 
equivalent to the previous form, by an algorithm described in [8, IO]. The standard form of 
the determining equations is solved by various techniques such as separation of variables 
and introduction of potential functions for further simplification. If an equation cannot be 
explicitly integrated, the equation Md the corresponding functions are added to the final 
result. With the help of this program, we discovered that the symmetry group described 
in [I]  is incomplete. The resulting infinitesimals, which are the complete solution of the 
determining equations under the restriction B = 6 + 1, are given by 

E' = CI + C3t + c4pqt2  

,,P = C ~ W  + y r t w  + f ( u ,  t )  

(3) 

(4) 

with 

r = @(-I + 7 + + w). (5) 

The arbitrary function f ( u ,  t) has to solve the original equation (1). This property reflects the 
linearity of the PDE and should be expected. Apart from the infinitedimensional subgroup 
reflecting the linearity of equation (l), the symmetry group contains a finite four-dimensional 
subgroup because of the four integration constants. 

Comparing our results with those given in 111, we have that the symmetry group in that 
article is a subgroup of symmetries (2)-(4) with f ( u ,  t) = y = 0. Thus, the similarity 
solutions described in [I]  are also incomplete. We will demonstrate that our symmetry 
reduction for subgroup y will give a new type of solution in the time and space-dependent 
case. In the case of subgroup cq, our results differ from those presented in [l], where only 
the scaling solution in the space variable is considered. 

We found an additional completely new solution which is characterized by the group 
constant c4 and, therefore, we have a discrete four-dimensional Lie-algebra instead of a 
three-dimensional one. According to the labelling used in [l], a basis of this discrete 
Lie-algebra is chosen: 

xl = a, (6) 

x2 = (7) 

(8) x3 = --a,, + tar 
B 

x4 = (U'+ - ~ B V I U ) ~ , ,  + pzqtza, + rtwa,. (9) 

K 
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Consequently, the tables for the commutators and the adjoint representation have to be 
generalized. The commutator table is given in table 1 and the adjoint representation in 
table 2. The adjoint representation is calculated according to the procedure described by 
Olver [9]. First, following the method proposed by Olver, the adjoint representation of the 
Liealgebra (6)-(9) given in table 2 is calculated. With the aid of the adjoint-representation 
transformations generated by the vector fields, (6H9) can be found to reduce a vector field 
of the general form 

x = a1X1+ azxz + a3X3 + a4X4 

to the following six cases which can be summarized in the optimal system: 

Xq X3 + aXz with a E R X2 + XI x2 - XI x2 XI' 

To compute invariant solutions of the symmetry group of equation (I) ,  only these six cases 
need be considered. The last five cases correspond to solutions which have already been 
calculated by Saied and El-Wakil [l]. If we wish to calculate an invariant solution containing 
X, in a linear combination with the other basis elements according to the optimal system, 
it is sufficient to calculate the invariant solution corresponding to Xq. 

Table 1. Commutators for the Lie-algebra of the rate equation (1) where r is given by 
equation (5). 

[ . I  x1 x2 x3 XI 

XI 0 o xI  2p2~x3+rx2 
x2 0 0 0  0 
x3 -XI 0 0  XI 
x4 -rx2-zp2~x3 o -x4 0 

Table 2. Adjoint representation of the Lie-algebra where r is given by equation (5 ) .  

Ad XI x 2  x3 X4 

XI XI X I  x ~ - - E x ,  x4 -s(rx2+2p2~x3)+~2p2qx1 
x1 XI x2 x3 x4 
x3 e'xl x1 x3 C S X 4  

x4 xI t drx2 + 2 B 2 S X 3 )  + ~ ~ , 9 ~ ~ x ~  x2 x3 + €x4 x4 

A solution of (1) which is invariant under the action of X4 has to satisfy the invariant 
surface condition, a PDE of first order for w(u, t ) :  

Solving the linear PDE (IO), we get the similarity representation of w(u, t )  : 

w(u ,  t )  = W(z)tY 

where the similarity variable combines the time and space variables in a non-hivial way 
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The scaling exponent of the time y is given as 

- 1  + tl+ Btl + tlP 

B? Y =  

Inserting the similarity solution (1 1) into the original PDE, we obtain an ODE for W ( z ) :  

b W ( z )  + cz W'(z)  + dzZ N'''(z) = 0 (12) 

where 

C = -B  + Bt l+  BZV + B W  

d = -B2q 

are constants. It is obvious that the solutions of equation (12) are powers in z 

W ( Z )  = klzx' + k2zKZ. (13) 

The scaling exponents KI and KZ of the simikity variable z have to solve a quadratic 
equation in the parameters @, 7 and p: 

The reduced equation (12) has the same form as the ODE (35) in [l]. Compared with 
our discussion, Saied and El-Wakil restrict themselves to the time-independent case with 
the similarity variable z = U. Thus, their similarity solution w(u ,  t )  = F ( u )  is completely 
independent of t .  In contrast to these results, our similarity variable z = ( B ~ Z ' K ~  -t)-'  and 
our solution w(u,  1 )  = tYW(z) depend explicitly on the time t and, therefore, our solution 
describes a space- and timedependent process. 

For t = 0, ow solution to equation (1) has a singularity For general values of the 
parameters B ,  q and p, solution (13) is only defined in regions where z is greater than zero. 
At the borders of these regions, there also exist singularities with respect to the determining 
equation 

In conclusion, we have demonstrated that the special case ,5 = 6 + 1, discussed by Saied 
and El-Wakil fl]. allows a four-dimensional discrete symmetry group as well as an infinite- 
dimensional continuous group. We have derived a completely new and exact solution of the 
fragmentation equation (1) which has not been calculated in [ l ] .  Our solution w(u ,  t )  can 
be expressed in a simple form, i.e. in powers of thsimilarity variable z = (Bqt2uB - t ) - ' .  

Finally, we note that the order of the symmetry group is reduced from a four-dimensional 
to a two-dimensional group if we consider the case in which the parameters p,  8, p and q a e  
independent. In this case, the resulting group is a subgroup of (2)-(4) where c4 = c3 = 0. 
This means that the equation is invariant with respect to a time translation and a scaling of 
the dependent variable and that it shows the expected linear behaviour. 
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